Copyright: Pubblico – Licenza CC

Document analysis by means of data mining techniques

Saima Jabeen Matr. No: s168999 PhD-XXVI Cycle Tutor: Prof. Elena Baralis

DAUIN – Department of Control and Computer Engineering, Politecnico di Torino Funded By: HEC-Higher Education Commission of Pakistan

Motivation and Research Context

- Information overload
- Unstructured form
- Different aspects of information

- Data mining and IR techniques
- Automatic Summary
- Text Summarization

ItemSum

- Research Problem(s)
 - Previous approaches typically focus single-word significance
- Need for capturing correlations among multiple-words

Novel Contributions

- Frequent itemset mining to discover correlations in TS
- The usage of an itemset-based model to represent the most relevant and not redundant correlations among document terms
- The selection of minimal set of representative sentences based on:
 - Sentence coverage Transactional data format
 - Sentence relevance score Score based on tf-idf statistics

Performance Comparison-ItemSum

dataset		PAT	TexSum			OTS		TexLexAn			
	р	R	Pr	F	R	Pr	F	R	Pr	F	
Natural Disaster	16	0.116	0.288	0.141	0.040	0.120	0.053	0.038	0.114	0.045	
Royal Wedding	12	0.036	0.215	0.058	0.034	0.174	0.054	0.030	0.150	0.047	
Technology	5	0.141	0.465	0.210	0.042	0.208	0.067	0.042	0.172	0.065	
Sports	10	0.145	0.297	0.189	0.055	0.133	0.075	0.071	0.149	0)93	
Education	8	0.039	0.241	0.064	0.036	0.170	0.051		1+-1	51	
	MCP 2011, (AI*AI'11), Paternio (** /										
detecet											
dataset		Pat	TexSum			OTS		,	TexLexAn	1	
dataset	p	Pat	TexSum Pr	F	R	OTS Pr	F	R	TexLexAn Pr	F	
Natural-Disaster	р 16	Pat R 0.060	ТехSum Pr 0.125	F 0.068	R 0.005	OTS Pr 0.012	F 0.006	R 0.005	TexLexAn Pr 0.011	F 0.006	
Natural-Disaster Royal-wedding	р 16 12	Pat ⁻ R 0.060 0.009	ТехSum Pr 0.125 0.082	F 0.068 0.015	R 0.005 0.003	OTS Pr 0.012 0.018	F 0.006 0.005	R 0.005 0.003	TexLexAn Pr 0.011 0.018	F 0.006 0.005	
Natural-Disaster Royal-wedding Technology	р 16 12 5	Pat R 0.060 0.009 0.113	ТехSum Pr 0.125 0.082 0.356	F 0.068 0.015 0.167	R 0.005 0.003 0.009	OTS Pr 0.012 0.018 0.065	F 0.006 0.005 0.016	R 0.005 0.003 0.003	TexLexAn Pr 0.011 0.018 0.011	F 0.006 0.005 0.005	

0.003

0.012

0.005

0.003

0.009

0.004

Education

0.017

0.141

0.030

8

Performance comparison in terms of ROUGE-2 score

Performance Comparison-ItemSum

Summa	rizer	I	ROUGE-2	2	I	ROUGE-3	3	ROUGE-4			
		R	\Pr	F	R	\Pr	F	R	\Pr	\mathbf{F}	
OTS	S	0.0746^{*}	0.0740^{*}	0.0743^{*}	0.0236^{*}	0.0234^{*}	0.0235^{*}	0.0087^{*}	0.0086^{*}	0.0087^{*}	
TexLex	xAn	0.0655^{*}	0.0643^{*}	0.0649^{*}	0.0197^{*}	0.0193^{*}	0.0195^{*}	0.0071^{*}	0.0069^{*}	0.0070^{*}	
DUC'04	peer102	0.0840	0.0846	0.0843	0.0264	0.0267	0.0265	0.0103^{*}	0.0104^{*}	0.0104^{*}	
competitors	peer103	0.0774^{*}	0.0896	0.0826	0.0243^{*}	0.0284	0.0260^{*}	0.0092^{*}	0.0108	0.0099^{*}	
competitors	peer140	0.0685^{*}	0.0692^{*}	0.0688	0.0218^{*}	0.0220^{*}	0.0219^{*}	0.0002*	0.0094^{*}	0.0093^{*}	
ItemS	um	0.0864	0.0869	0.0866	0.0307	0.0309	0.0	012	0.0136	0.0135	

(a) ms=12. Impact of the support threshold.

(b) min_sup=3%. Impact of the model size.

The Yago-based summarizer

- Research Problem(s)
 - Unsatisfactory soundness and readability of summaries
 - Semantic models were used only in preprocessing
 - Domain specific ontologies/taxonomies, dictionaries were used
- Need of a generic summarizer based on a generic knowledgebase
- Novel Contribution(s):
 - Integration of a semantics-based model into document summarization
 - Use Yago ontology to **evaluate** and **select** document sentences

Results:

YagoSum outperforms many state-of-the-art summarizers in terms of ROUGE scores on benchmark collections

The Yago-based summarizer

Performance Comparison-YagoSum

Summarizer		ROUGE-2			ROUGE-4		
		R	Pr	F	R	Pr	F
TOP RANKED DUC'04 PEERS	peer120	0.076*	0.103	0.086*	0.014*	0.019	0.016
	peer65	0.091*	0.090*	0.091*	0.015*	0.015	0.015*
	peer19	0.080*	0.080*	0.080*	0.010*	0.010*	0.010*
	peer121	0.071*	0.085*	0.077*	0.012*	0.014*	0.013*
	peer11	0.070*	0.087*	0.077*	0.012*	0.015*	0.012*
	peer44	0.075*	0.080*	0.078*	0.012*	0.013*	0.0-2-
	peer81	0.077*	0.080*	0.078*	0.012*	0.0	1
	peer104	0.086*	0.084*	0.085*		n = 7 - 4	1 / 4
	peer124	0.083*	0.001		ICSN U	957	•
	peer35		nnlicat	tions. I	5511 5		0.011*
DUC'04 HUMANC	toms	with A	hhue		0.009*	0.010*	0.010*
9 French SV	stems		0.096	0.092	0.013*	0.013*	0.013*
Expert		0.094	0.102	0.098	0.011*	0.012*	0.012*
	D	0.100	0.106	0.102	0.010*	0.010*	0.010*
	E	0.094	0.099	0.097	0.011*	0.012*	0.012*
	F	0.086*	0.090*	0.088*	0.008*	0.009*	0.009*
	G	0.082*	0.087*	0.084*	0.008*	0.008*	0.007*
	н	0.101	0.105	0.103	0.012*	0.013*	0.012*
OTS		0.075*	0.074*	0.074*	0.009*	0.009*	0.009*
texLexAn		0.067*	0.067*	0.067*	0.007*	0.007*	0.007*
ItemSum		0.083*	0.085*	0.084*	0.012*	0.014*	0.014"
Baseline		0.092*	0.091*	0.092*	0.014*	0.014*	0.014*
Yago-based Summarizer		0.095	0.094	0.095	0.017	0.017	0.017

SocioNewSum

- Research Problem(s)
 - correlations among relevant concepts are missed
 - Reader's expectations and current interests
- With the advent of social media, user's interest can easily be identified
- Novel Contribution(s)
 - Combining Semantic and social knowledge for news TS
 - Preliminary analysis of Twitter messages to discover the actual user's interests
 - Identifying ontological concepts in both genres
 - Summarization of news collections driven by social knowledge to generate appealing news summaries
- Results:
 - Integration of social knowledge substantially improves news document summarization performance

Overview of SocioNewSum

Performance Comparison-SocioNewSum

Dataset (Tuned setting)	TexLexAn			отѕ			Baseline			SociONewSum Standard result (Tuned result)			
	R	Р	F1	R	Р	F1	R	Р	F1	R	P	F1	
Debt Crisis (K=50, δ =0.1, α =0.6)	0.068	0.541	0.121	0.077	0.581	0.135	0.070	0.518	0.121	0.081* (0.082*)	0.569 (0.582)	0.141* (0.143*)	
Irene (K=30, δ =0.1, α =0.2)	0.062	0.577	0.110	0.064	0.602	0.116	0.055	0.532	0.099	0.066* (0.070*)	0.612* (0.646*)	0.119* (0.127*)	
Steve Jobs (K=40, δ =0.2, α =0.8)	0.057	0.533	0.102	0.060	0.573	0.109	0.068	0.615	0.122	0.072* (0.072*)	0.625* (0.645*)	0.126* (0.128*)	
Terrorism (K=70, δ =0.1, α =0.7)	0.047	0.447	0.086	0.052	0.479	0.093	0.045	0.444	0.082	0.055* (0.058*)	0.517* (0.544*)	0.099* (0.104*)	
UK riots (K=10, δ=0.1, α = 0.2)	0.060	0.522	0.107	0.065	0.586	0.117	0.052	0.456	0.092	0.065 (0.067)	0.578 (0.578)	0.117 (0.120*)	
US Open (K=40, δ =0.1, α =0.5)	0.076	0.651	0.136	0.065	0.545	0.116	0.065	0.492	0.114	0.080* (0.082*)	0.654 (0.663*)	0.142* (0.145*)	

SocioNewSum: Performance comparison in terms of ROUGE-1

Dataset (Tuned setting)	TexLexAn		отѕ		Baseline			so na Fi	GI			
	R	Р	F1	R	Р		Г и	ain	eeri	ng · ·	•	
Debt Crisis (K=50, δ=0.1, α=0.6)	0.021	0.175			alvs	sis İ	ner	igiri			(**E***)	(0.048*)
Irene	Min	ind	anc						0.031	0.023	0.221*	0.041
Stev (K=40, δ =		Jers	hey	, US	A.203	0.037	0.024	0.225	0.043	0.025 (0.026)	0.232*	0.045*
Terr (K=70, δ		0.147	0.028	0.017	0.161	0.031	0.014	0.142	0.025	0.014 (0.019*)	0.142 (0.188*)	0.025 (0.035*)
UK ots (K=10, δ =0.1, α =0.2)	0.022	0.195	0.039	0.022	0.203	0.040	0.015	0.139	0.027	0.023 (0.024)	0.211* (0.211*)	0.043* (0.043*)
US Open (K=40, δ=0.1, α=0.5)	0.025	0.221	0.045	0.021	0.182	0.038	0.025	0.198	0.044	0.032* (0.034*)	0.264* (0.278*)	0.056* (0.059*)

SocioNewSum: Performance comparison in terms of ROUGE-SU4 12

Concluding remarks

- frequent itemsets
- semantic-based
- Social document analysis
- Effectiveness of the proposed approaches
- Future developments
 - Incremental Updated summaries
 - Extension to multi-lingual document collections

